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Abstract
In recent years, the growth of optical techniques has introduced the possibility of allowing
several alternative methods for non-contact gear measurement to be utilised. Optical methods
can offer many advantages over tactile, such as the potential to evaluate delicate surfaces
quickly and measure the whole area of the gear tooth flank at the sub-micron level. However, to
maximise their potential, the magnitude of error and characterisation of the sources of error and
uncertainty need to be understood. By utilising a series of designed experiments with known
size gear artefacts, the effects caused by the change of specific key instrument parameters can be
evaluated. These measurement trials demonstrate how the results from experimental
methodologies can be used to determine the statistical significance of any predetermined
instrument variables under study. When correctly planned, designed experiments allow the
identification of the sources of error. By applying statistical methods, we can determine if these
sources are significant or not. This will allow determination of which parameters need to be
defined when optimising the conditions for measurement by comparing the results with those
from the UK National Gear Metrology Laboratory. This comparison can also provide guidance
on developing measurement uncertainty.
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1. Introduction

Used to transmit motion and power, and to transfer torque and
speed in mechanical and hydraulic systems, gears have a wide
and growing use in many industrial and commercial applic-
ations as an essential part of our modern world. For equip-
ment to work efficiently, gears must be well designed and
used with suitable bearings and lubrication in a robust gear-
box. From a metrology standpoint, the main requirement is
that gears are measured as accurately as possible, so a good
understanding of the most suitable measurement methods is
required including a thorough study of all the consequent
error and uncertainty sources. To comprehensively investigate
dimensional errors and sources of uncertainty, knowledge of
the manufacturing process is very advantageous. Traditional
gear machining methods such as hobbing have been joined
by modern computer numerical controlled (CNC) technolo-
gies, with software that can generate standard tooth profiles
and modify geometries using only standard tools [1]. By redu-
cing the need for specialised cutting tools, and taking advant-
age of CNC cycle times, costs can be considerably reduced. In
order to analyse how gear deviations are affected by the geo-
metric errors of a measuring machine, physical artefacts have
been developed by, and shared between, the UKNational Gear
Metrology Laboratory (NGML) and theGerman Physikalisch-
Technische Bundesanstalt (PTB). Artefacts for the evaluation
of contact instruments in the measurement of gears are defined
in the BS ISO 18653:2003 [2]. The software required to eval-
uate simulated geometric errors is available, and it is worth
noting that by applying a reversal technique, it was found that
more than 80% of the gear deviations stemming from geomet-
ric errors can be compensated for [3]. This could considerably
reduce the errors in the measurement, and the need to develop
and ship large physical artefacts.

In addition to well-established tactile solutions, other meth-
ods for measurement include the polar coordinate method [4],
structured light systems [5], and focus variation by means
of a confocal microscope [6]. Some recently deployed multi-
sensor instruments offer the ability to measure interchange-
ably with hybrid (combined tactile and optical) methods.
Other optical measurement methods include line structured
light sensors generating three-dimensional (3D) point clouds
in conjunction with a floating rotary table [7]. The captured
data are then analysed utilising statistical methods specific-
ally for the evaluation of measurement error [8]. While tra-
ditional methods for the evaluation of measurement uncer-
tainty in gears are defined in ISO 18653, the general refer-
ence document for uncertainty is JCGM Guide 100:2008 [9]
supported by the UKAS guide to uncertainty [10]. It is pos-
sible to assign task-specific measurement uncertainty through
simulation software as defined in ISO/TS 15530-4:2008 [11]
and ISO 14253-1:2017 [12]. Gear measurement uncertainty
simulations can make use of a virtual coordinate measuring
machine and employ Monte Carlo methods for uncertainty
propagation [13]. The latter are considered as the most com-
mon solutions in CMMmeasurements, as they can handle very

complex measurement sequences. While the ISO gear inspec-
tion standard [14] does not currently define any optical tech-
niques, these methods can offer several advantages over tactile
ones, such as potentially higher throughput allowing for more
of the surface (flank) of the tooth to be measured. If the whole
flank is measured, a predictor model can be generated for wear
on gear teeth and could be utilised as a digital twin to aid gear
design [15].

There are several types of optical systems for gear meas-
urement, and some can create areal deviation 3D maps of
the whole tooth surface and use a meshed point cloud [16].
One commercial example of hybrid technology is offered by
the Hexagon® HP-O optical sensor. This system combines a
frequency-modulated interferometric optical distance meas-
urement sensor within a Leitz coordinate measuring machine
(CMM). With this system, no point cloud is created, but
rather the tactile probe is replaced with a sensor which gath-
ers points from a single beam of laser light. For the work
in this paper, a cylindrical spur gear was provided by the
NGML, and a series of measurement trials were undertaken
with theHP-O sensor to explore the relationship between some
key optical instrument parameters. The parameters considered
were point density (pd) and scan speed (ss) .Designed experi-
ments (DOE/DOX) [17] were chosen as the central method-
ology to explore error and potential sources of uncertainty
by studying the effects caused by the deliberate changes to
the aforementioned parameters. The statistical methodologies
presented here can determine not only the error in themeasure-
ment of gears but can be utilised for further research beyond
the scope of this paper. Results gathered from these studies
have been verified by correlation back to the results obtained
from the gear artefacts provided and measured by the UKAS
approved tactile measurement method at the NGML (UKAS
registered laboratory 2363).

2. Applying DOE methodologies to gear
measurement

The use of designed experiments to explore specific uncer-
tainty components has previously been investigated [18], but
much less so for the optical measurement of larger module
(larger than 3 mm) gears, and not with the system chosen.
The novelty of this work is the addition of experimental con-
trol charts ‘analysis of means’ (ANOM) & ‘analysis of range’
(ANOR) [19] to explore the nature of induced changes in the
instrument settings and to determine the nature of the vari-
ation on the measurement results. A key to developing uncer-
tainty budgets is not only to understand the particular sources
(or input variables) within the measuring system, but also to
explore the nature of any applicable sensitivity coefficients.
While it is common to make use of partial differentiation for
this purpose [10], the assumptions of changing one input while
keeping all others constant is often not practical because it
is not possible to guarantee that all inputs are kept constant.
Designed experiments may be more suitable to determine the
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effects of the sources of variation as DOE can investigate mul-
tiple input (and output) variables, and these methods do not
require the assumptions of partial differentiation to be met.
Any assumptions that are made can be statistically tested post-
hoc, as shown in section 3.2.1.

By utilising designed experimental theory with various
instruments across known artefacts, the equations which
define the relationship between the instrument settings or the
key process input variables (KPIV) can be determined, and the
measurement results or key process output variables (KPOV)
[19] will allow the measurement process optimisation of any
instrument under study through traceability of the results back
to the primary source (NGML). By removing any sources
of instrument variation which are not statistically significant,
a reduced or simpler uncertainty budget can be developed
containing only those key instrument variables (also called
sources or factors) which were identified as potentially signi-
ficant. Once determined, the key sources defined as the major
sources of error can be populated in an initial design matrix.
This procedure and the definitions of statistical significance
are described in section 3.

The HP-O sensor was chosen in this experimental setup.
In the frequency modulated interferometric optical distance
measurement method [20] on which this sensor is based, the
measured distance L can be estimated by:

L= c ·∆Φ/(2 ·B · ng) (1)

where B is the optical frequency scanning range of the laser,
∆Φ is the phase change of the interference signal, c is the
speed of light in vacuum, and ng is the refractive index of
air. The 3 mm diameter of the HP-O (HPOAL) sensor and
the measurement range of up to 20 mm can achieve repeat-
ability of under 0.3 µm, when used with the Leitz PMM-
C CMM. The sensor can measure difficult-to-access features
at a scanning speed of 1000 points per second and a resolu-
tion of 0.9 nm [21]. Optical measurements can be captured in
single points or in scanning mode for rapid throughput. The
sensor is easy to mount on an indexable head, as the weight
is less than 190 g. One disadvantage is given by the relat-
ively small acceptance angle. For a mid-range sensor with a
working distance of 10.5 mm, the acceptance angle is approx-
imately ±30◦ and for a reflecting surface it is ±1◦. For this
reason, this system might not be suitable for some types of
surfaces (i.e. sharp threads). For these gear studies, a fairly
large module (3.9 mm), non-polished gear was chosen, while
the CMM provided by the Manufacturing Technology Centre
(MTC) incorporated an integrated rotary table.

2.1. Gear setup on the CMM

A 29-tooth spur gear with a module of 3.9 mm (supplied by
the NGML) was mounted on a Leitz PMM-C CMM at the UK
MTC as shown in figure 1.

The first series of trials were designed to look at the repeat-
ability of the optical sensor. To set a baseline, the gear was first
aligned and measured twice with a conventional tactile ruby
sphere of 3 mm diameter and best practice was followed where

Figure 1. NGML spur gear measured with a Hexagon HP-O sensor
on a Leitz PMM-C CMM at the MTC.

applicable [22]. The first measurement set was made with the
tactile probe but without the use of the rotary axis, while the
second tactile run was completed with the rotary axis. The pro-
file scan speed was initially set at 2 mm s−1 with 0.005 mm
distance between points, while the lead (or helix) was scanned
at 1 mm s−1 with a maximum distance of 0.0005 mm between
points. The order of tooth scan was as follows; left flank pro-
file, left flank lead, then right flank profile followed by right
flank lead. The line of scan for profile, lead and pitch was
the same for both tactile and optical sensors and is shown in
figure 2(a), while the line of contact for meshing gears (both
helical and spur contact) is shown in figure 2(b).

Each sensor was utilised in a single orientation (tact-
ile sensor A axis = 0◦, B axis = 0◦ and optical sensor A
axis = 90◦, B axis = 0◦). The rotary axis (R) was required
during all optical trials, due to indexing head constraints with
the optical sensor. Initially, a tactile/optical comparison was
not possible across the full depth of the tooth, but only from
the reference diameter d= 113.10 mm to the tip diameter
d2 = 120.90mm. Thewidth of the teeth was 20mm, and a lead
evaluation range of 14 mmwas chosen to allow 3 mm of clear-
ance at each end of the gear tooth. Following successful repeat-
ability trials for both tactile and optical methods, experimental
work involving the optical scans was undertaken as presen-
ted in this paper. The gear software utilised was Quindos®

(available from Hexagon Metrology). It is noteworthy that a
paradigm shift from line orientated measurements and evalu-
ations to a holistic area orientated gear inspection method has
been proposed [23], however this work is ongoing and outside
the scope and inspection methodology defined in this paper.

2.2. Gear characteristics

The mandatory gear characteristics for reporting include pro-
file (FHα, ffα and Fα), lead (FHβ, ffβ and Fβ), individual and
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Figure 2. (a) Gear profile (involute), lead (helix) and pitch, (b) line of contact for helical and spur gear.

cumulative pitch (Fp,fp), and radial runout (Fr) as defined in
ISO 1328-1 [24]. Profile and lead are measured on both flanks
of four teeth approximately 90 degrees apart (on teeth identi-
fied as 1, 8, 16 and 23). Individual and cumulative pitch are
measured across both flanks of all teeth. Runout is measured
across 360 degrees of the gear diameters back to the datum
axis. When measuring profile and helix, a scanned line is util-
ised with a minimum number of 300 points as recommended
by the NGML. This requirement does not cause any issues for
most modern CMM’s. In addition, a guidance on data filtering
is defined [14] and was followed (as indicated in section 4.5).
However, when considering pitch or runout this is not a neces-
sary consideration, since gear pitch is not normally measured
as a scanned line but as a series of points (refer to figure 2(a)).
For this study, the pitch was measured in an unconventional
manor as a series of multiple scans across all teeth, allowing
point density and scan speed to be changed and evaluated dur-
ing the experiments. It seemed sensible to consider pitch and
concentricity/runout characteristics as a starting point since
some of the initial results for profile and lead were inconsistent
and because the preferred HP-O (HPOAM) sensor was dam-
aged, and no compatible replacement was available.

2.3. ANOM and ANOR charts

When evaluating the repeatability ofmeasured results (i.e. data
recorded in time series under the same input settings), stat-
istical process control (SPC) charts are most commonly used
[25]. However, when analysing experimental data, a particu-
lar pair of charts called ANOM and ANOR are utilised [19].
The detection limits applied on the ANOM & ANOR charts
look like the control limits on a SPC chart, but they differ
slightly. SPC charts are used for data characterised by routine
while experimental data are characterised by uniqueness. This
is why SPC charts have a potential shortcoming as tools for
analysing experimental data. Industrial experiments will gen-
erally involve the exploratory analysis of a limited amount of
data that is, a priori, thought to contain real differences. SPC
is set up for the analysis of ongoing streams of data that, hope-
fully, contain no real differences. So, if a SPC chart is used
to analyse experimental data, those differences identified as

potential signals are likely to represent real effects (though
some real differences may be overlooked). In conclusion, the
ANOM/ANOR charts differ from traditional SPC charts in
two physical aspects: (a) They are limited to a finite number
of subgroups, and (b) they require the specification of an over-
all alpha level for the procedure (in this case 0.1 or 10% for
ANOM and 0.05 or 5% for the ANOR). The first of these dif-
ferences prevents the user from using these techniques with
production data. The second of these differences lets the user
adjust the sensitivity of the procedure. ANOM tests whether
the ten (in this case) individual treatment means differ from
the overall mean (also called the grand mean). As with most
other SPC charts, the first chart ANOM plots central tendency
or location, while the lower ANOR chart plots dispersion or
spread.

3. Results

3.1. ANOM and ANOR example

The maximum individual pitch error (fpi) from the left flanks
of a 29-tooth spur gear with a normal module of 3.9 mm was
measured three times under ten different experimental con-
ditions on the CMM with the HPOAL sensor. Two differ-
ent point densities and five different scan speeds were chosen
to evaluate the effects of change observed upon the results.
The three measurements were recorded at each of the ten
coded combinations of point density (pd) and scan speed (ss).
Point density was coded with A and B levels (where A is
100 points mm−1 and B is 20 points mm−1), while scan speed
was identified with five levels coded 1, 2, 3, 4, and 5 (where
level 5 is 5 mm s−1, down to level 1 which is 1 mm s−1). The
recorded results are shown in table 1.

From the obtained data, three questions can be asked:

1. How does the point density affect the values of maximum
individual pitch error (fpi)?

2. How does the scan speed affect the values of maximum
individual pitch error (fpi)?

3. Does any identified interaction between point density and
scan speed affect the results?
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Table 1. Maximum individual pitch error recorded (µm).

Point density (pd) A A A A A B B B B B

Scan speed (ss) 5 4 3 2 1 5 4 3 2 1

Result fpi 1 (µm) 3.50 3.10 3.00 2.80 1.90 3.80 3.60 3.90 3.50 3.00
Result fpi 2 (µm) 3.90 3.70 3.10 2.00 1.80 4.60 4.40 3.20 4.70 3.80
Result fpi 3 (µm) 3.60 3.60 3.30 2.30 2.20 4.10 3.90 3.80 4.00 3.10

Mean fpi (µm) 3.67 3.47 3.13 2.37 1.97 4.17 3.97 3.63 4.07 3.30
Range (µm) 0.40 0.60 0.30 0.80 0.40 0.80 0.80 0.70 1.20 0.80

The data in table 1 was populated into the ANOM/ANOR
charts as shown in figures 3 and 4 respectively. The calcula-
tion of the detection limits is similar to the computation of the
control limits for a traditional SPC chart. The grand average
obtained from the data reported in table 1 is equal to 3.373 µm
(as shown on the ANOM chart), and the average range is
0.68 µm (as shown on the ANOR chart). With an overall alpha
level of 10%, the ANOM scaling factor for k = 10 subgroups
of size n = 3 (taken from ANOM statistical tables) is 0.893.
The ANOM detection limits are calculates as follows:

ANOM Detection Limits(LDL&UDL)

= Grand Average±ANOM.10 (Average Range)

= 3.373µm± 0.893 (0.68)

= 2.766 µm (LDL) and 3.981µm (UDL) (2)

The ANOR proceeds in a similar manner. With an alpha
level of 5%, and with k = 10 and n = 3, the ANOR scaling
factor for k = 10 subgroups of size n = 3 (taken from ANOR
statistical tables) is 0 2.519. The ANOM detection limit is as
follows:

ANOR Upper Detection Limit (UDL)

= ANOR.05 (Average Range)UDL

= 2.519 (0.68) = 1.713 µm . (3)

There is no lower detection limit for this ANOR chart.
It can be observed from the range ANOR chart that each

group has similar ‘within’ subgroup, variation, meaning only
common or random cause variation is present [19].We observe
the ten group subgroup ranges, while the mean of all ranges is
0.68 µm with the upper detection limit of 1.713 µm. There is
no lower detection limit for this ANOR chart. On the ANOM
chart, each data point reported is the mean of the three read-
ings for each of the ten subgroups as indicated in table 1. It
can be further observed that the overall mean is 3.373 µm,
and while subgroups 2B and 5B are above the upper detection
limit (3.981 µm), subgroups 1A and 2A are below the lower
detection limit (2.766 µm). This indicates that the two groups
identified as A and B (point density) are different. Group A
has significantly lower values than group B meaning higher
point density results in lower values, while the lower scan
speed (the numbered subgroups) generally results in lower val-
ues. Therefore, both point density and scan speed are signific-
antly different between levels. Significance is calculated and
defined numerically in section 3.2.1. Since only two predictor

variables are being considered, only one interaction is present.
This interaction effect can be exploited or avoided as neces-
sary only after it has been visualised. In the ANOM chart, the
interaction can be visualised by looking at the line between
2A and 3A and comparing it with the line between 2B and
3B. These lines are almost perpendicular showing that inter-
action is present at this point. If numerical values (p values)
are required to define the significance of the factors and the
interaction, this can be conducted via an analysis with ANOVA
(refer section 3.2 onwards).

So, to answer the questions:

• How does the point density affect the results? Moving from
higher (A) to lower (B) point density levels leads to signific-
antly higher values for maximum individual pitch error.

• How does the scan speed affect the results? Moving from
higher (5) to lower (1) scan speeds levels leads to signific-
antly lower values for maximum individual pitch error.

• Does the interaction between point density and scan speed
affect the results? There is one point of interaction between
the two-point densities, and it occurs between scan speeds of
levels 2 A and 3 A when compared to 2B and 3B (see figure 3
and bottom left of figure 5).

To determinewhich reported values aremore representative
of the true size under study, correlation was obtained from the
NGML measurements via their Klingelnberg P65 instrument.
This instrument is UKAS approved with known error and
uncertainties. The ‘true’ maximum pitch error was obtained
and is discussed in 3.2.3. The initial purpose of this study
was simply to determine if point density and scan speed (and
their interaction) were statistically significant on the results
obtained from one specific gear artefact, measured with one
specific sensor HPOAL, on one instrument (a Leitz CMM), at
one location (the MTC), and at one point in time.

3.2. Initial orthogonal screening matrix

The ANOM/ANOR charts test whether the treatment means
differ from the grand average (or overall mean).When utilising
an orthogonal matrix in conjunction with ANOVA techniques
[17], it is possible to test whether multiple treatment means
differ significantly from each other. To explore the effects of
changing the parameters on measurement results, an ortho-
gonal matrix was developed, and is illustrated in table 2.
Since the output results from gear trials include many gear
characteristics, the maximum individual pitch error data (fpi)
from the previous study shall again be considered.
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Figure 3. ANOM Chart for subgroup mean values (groups 2A, 1A, 5B, and 2B are outside the detection limits).

Figure 4. ANOR dispersion Chart for individual pitch subgroup range values.

3.2.1. Analysis via factorial ANOVA. Table 2 has the same
output values as in table 1 but it was generated in Minitab®

statistical software. It is only necessary to specify the number
of factors, the levels of factors, and the number of replications
for the matrix to be created. The blocks represent a complete
set of readings for each trial. Since there were three readings
per trial, we have three blocks of data. Normally when chan-
ging the experimental conditions, it is recommended to do this
in a random order, and this order can be generated by the soft-
ware. In this study, the existing data from table 1 was copied
into the appropriate cell in the final column of table 2. Table 3
shows the numerical analysis fromMinitab statistical software
utilising ANOVA [17].

The analysis model in table 3 shows significant differ-
ence (defined as P values < 0.05) for point density, scan
speed, and their interaction confirming the findings of the
ANOM and ANOR charts. P values are used extensively with
ANOVA (and sometimes to determine the normality of data)
so it may be helpful to briefly explain how they are calcu-
lated. In table 3, the sum of squares for all sources and inter-
action (Adj SS) are added in quadrature to give a total of
16.8387 at 29 (n−1) degrees of freedom. Next, consider the
two-way interaction source between point density and scan
speed. The F-Value is calculated by first dividing the adjusted

mean square (Adj MS) for this source (0.4903) by the adjus-
ted mean square assigned to error (0.1286). This provides
a value of 3.81 as indicated. Statistical significance at the
defined confidence interval can be determined either by com-
paring this value to the F ratio (F#) indicated in a set of F
statistical tables, or by calculating the value directly with the
F distribution. Since our source has 4 (n−1) degrees of free-
dom, and our error term has 18, we can input these with our
calculated value into a cell in Microsoft Excel® with com-
mand ‘ = FDIST (3.81,4,18)’. This function calculates the P
value. The calculated value is 0.02 (rounded). All P values are
statistically significant when they are smaller than 0.05 (the
95% confidence interval). Since both point density and scan
speed have values lower than 0.01 (the 99% confidence inter-
val) they are both highly significant in terms of their influ-
ence on the measurement results. The data gathered clearly
demonstrates how results from various measurement sources
and methods could be compared. To see if the results of the
optical and tactile results differ significantly, the graphical and
numerical techniques outlined here would be utilised to make
this determination. Designed experiments could be applied
to investigate various sources of instrument variation to see
if such sources influence results and explore new sensitivity
coefficients. DOE/DOX has an advantage over the partial
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Figure 5. Graph of the mean main effects and interaction analysis in Minitab® software.

derivative method [10], since the various assumptions asso-
ciated with ANOVA can (and always should) be tested using
various post hoc analysis options [17] as shown in the ana-
lysis in figure 6. These assumptions include that the variation
within each subgroup is homogeneous, no serial correlation is
observed between means and standard deviations, and that the
residuals are normally distributed within (but not necessarily
between) groups. These conditions were all met during early
trials.

3.2.2. Regression analysis. Regression analysis is applied
as a part of the output statistics from DOE [17]. The key
output from this is the R-Square value (or R2) and is calcu-
lated from the sum of squares for the model. Our model in
table 3 has 11 degrees of freedom consisting of the sum of
squares for point density (6.1653) scan speed (5.9120) and the
interaction between them (1.9613). We combine these terms
(14.0386) and divide by the total sum of squares (16.8387).
This ratio is then multiplied by 100 to obtain a percentage
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Table 2. Screening matrix for CMM measurement trials on spur gear.

Trial Blocks Point density Scan speed fpi (µm)

1 1 B 1 3.00
2 1 B 2 3.50
3 1 A 1 1.90
4 1 A 5 3.50
5 1 B 5 3.80
6 1 A 3 3.00
7 1 B 3 3.90
8 1 A 4 3.10
9 1 B 4 3.60
10 1 A 2 2.80
11 2 B 3 3.20
12 2 B 2 4.70
13 2 A 1 1.80
14 2 A 2 2.00
15 2 B 5 4.60
16 2 A 5 3.90
17 2 A 3 3.10
18 2 B 4 4.40
19 2 B 1 3.80
20 2 A 4 3.70
21 3 B 4 3.90
22 3 A 4 3.60
23 3 A 3 3.30
24 3 A 5 3.60
25 3 B 3 3.80
26 3 B 1 3.10
27 3 B 2 4.00
28 3 A 2 2.30
29 3 B 5 4.10
30 3 A 1 2.20

Table 3. ANOVA analysis in Minitab statistical software.

Source DF Adj SS Adj MS F-Value P-Value

Model 11 14.5233 1.3203 10.26 0.000
Blocks 2 0.4847 0.2423 1.88 0.181
Linear 5 12.0773 2.4155 18.78 0.000
Point density 1 6.1653 6.1653 47.93 0.000
Scan speed 4 5.9120 1.4780 11.49 0.000
2-Way interactions 4 1.9613 0.4903 3.81 0.020
Point density∗scan speed 4 1.9613 0.4903 3.81 0.020
Error 18 2.3153 0.1286
Total 29 16.8387

value. In this case the value is 83.37%. R2 is the coefficient
of determination. This measures that proportion of total vari-
ation about the output mean (y) explained by the regression
(or 83.37% of the total variation about the average or mean).
Since each comparison consumes 1 degree of freedom (n−1),
we have 29 degrees of freedom in total. It is worth noting,
that had we defined the model with all the available degrees
of freedom and all the sources, we would have a ‘perfect’ the-
oretical model with a R2 value of 100%, but then we would
not be able to distinguish between the source and any error.
Those sources and interactions with the greatest influence (or
values) are normally assigned to the model, while the rest are

assigned as error. Where our R2 value remains reasonably high
(>60%) this decision may be justified. If the R2 value is lower
than expected, unknown or unassigned sources may be present
inside the error term. Sometimes lower R2 values are observed
when trying to fit a linear regression to a data set which non-
linear. This can sometimes be the case where only two levels
for each source (x) are applied (as is common in DOE). Refer
to section 3.2.4 on testing for linearity.

3.2.3. Regression for process optimisation. One of the
most useful purposes of designed experiments is the ability
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Figure 6. Post hoc residual analysis.

to fully understand the cause-and-effect relationship between
the inputs and output(s). Having determined that scan speed
and point density are statistically significant (defined as P
values < 0.05) we can explore this relationship. One output
equation from a DOE is a multiple regression which aims
to find a relationship between variables in situations where
there are several independent variables. The independent (or
input) variables (x) can be either continuous or qualitative (or
both) however, the dependent (or response) variable (y) must
be measured on a continuous scale. As explained in [26], a
multiple regression model with k independent variables will
fit a regression surface in a k + 1 dimensional space. The least
squares regression line for multiple regression of n independ-
ent variables. Since y is defined as a function of x in this rela-
tionship, we can write the equation (4):

y= a+ b1x1 + b2x2 + . . .bnxn (4)

where:

• a is a constant,
• xn is the nth independent variable,
• bn is the coefficient of the nth independent variable.

As the name implies, a bivariate model is a model with two
independent variables, as expressed in equation (5). This also
describes a multiple regression model. As explained in [26],
the intercept a predicts where the plane will cross the y-axis.
The value b1 is gradient of the variable x1, this predicts y with
every change in unit of x2 whilst x1 is constant. The gradient
of the variable x2, b2, predicts y with every change in unit of
x2 whilst x1 is constant. This applies to our model in exactly

the same way,

y= a+ b1x1 + b2x2. (5)

In our example, the pitch (fpi) of a master gear was meas-
ured on a CMM with an optical sensor. If pd represents the
first independent variable (point-density) and ss represents the
second independent variable (scan speed), then:

• 3.3733 µm is the grand average or overall mean (refer to
figure 3)

• pda is the first independent variable at level A
• pdb is the first independent variable at level B
• ss1 is the second independent variable at level 1
• ss2 is the second independent variable at level 2
• ss3 is the second independent variable at level 3
• ss4 is the second independent variable at level 4
• ss5 is the second independent variable at level 5

y= 3.3733− 0.4533pda+ 0.4533pdb− 0.740ss1
− 0.157ss2 + 0.01ss3 + 0.343ss4 + 0.543ss5
− 0.213pdssA1 − 0.397pdssA2 + 0.203pdssA3

+ 0.203pdssA4 + 0.203pdssA5 + 0.213pdssB1

+ 0.397pdssB2 − 0.203pdssB3 − 0.203pdssB4

− 0.203pdssB5. (6)

This knowledge can allow optimisation of the inputs for any
desired output. The regression equation could be used when
adjusting the predictor settings of point density and scan speed
to instrument parameters that would most closely align with
NGML results. The value of the maximum pitch error (fpi)

9
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Figure 7. Process optimisation utilising regression model in
Minitab®.

for the gear when measured on the Klingelnberg P65 tactile
instrument at the NGML provided a result of 2.155 µm. We
can observe that the closest value to the NGML result was
1.97 µm. This occurs at point density A and at scan speed 1
(table 1 and figure 3). Closer adjustment could not be achieved
because the predictor variables (scan speed and point density)
were coded as discrete (or categorical) variables. If the inputs
were recorded as variables on a continuous scale (as was the
output variable), more exact values for point density and scan
speed which would give the desired output of 2.155 µm could
have been determined. Experiments such as response surface
methodologies [17] are useful for this purpose, and they could
be executed in any future phases of experimental analysis if
required. Had the ideal settings not been as obvious as in this
case (for example, if the input parameters were multiple levels
on a continuous scale), process optimisation analysis can be
determined by the regression model as shown in figure 7. Here
Minitab statistical software confirms the result we determined
in our earlier example.

3.2.4. Testing for linearity. When only two levels of a vari-
able (i.e. point density) are utilised, it may not always be obvi-
ous to see if any relationships are non-linear. For example, con-
sider the following relationship:

yo = 0, xo ≈ 0, and:

y4 = 4, x≈ 8.

Then if the relationship is linear, we would expect to see:

When y2 = 2, x≈ 4

Most statistical software can check this mathematically
quite easily. If the relationship is suspected to be non-linear,
we would require more than two levels per source variable to
determine if non-linearity was present (and what type) when
developing a non-linear regression model to maximise our
R2 value.

3.2.5. DOE for the determination of sensitivity coefficients.
UKAS M3003 [10] states that the sensitivity coefficient asso-
ciated with each input estimate xi is represented by ci. It is the

partial derivative of the model function (X) with respect to Xi,
evaluated at the input estimates xi. It is given by,

ci =
∂f
∂xi

|Xi=xi ≈
∂y
∂xi

. (7)

In other words, it describes how the output estimate y var-
ies with a corresponding small change in an input estimate
xi. If the functional relationship is not well known for a par-
ticular measurement system, or it cannot easily be differen-
tiated, the sensitivity coefficients can usually be obtained by
the practical approach of changing one of the input variables
by a known amount, whilst keeping all other inputs constant,
and noting the change in the output estimate. As described
earlier, the problem with this approach is that in practice it
may not be possible to keep all other inputs constant, and it
is also not possible to know the extent of the relationship (or
interactions) between multiple input variables. This is not a
problem if we utilise DOE theory, since we can explore both
the effects of each input both independently and in any inter-
actions with other inputs. This would allow a determination as
to if the effects are significant at a known confidence interval,
as well as develop a mathematical relationship between inputs
and outputs.

3.2.6. Development of sensitivity coefficients for point
density and scan speed on displacement. The most
common sensitivity coefficient is the coefficient of thermal
expansion (CTE). Here, the relationship of temperature of
the measurand (commonly in units of ◦C) are converted
into dimensional deviation or displacement (often in µm).
The linear CTE for steel typically falls within the range of
10.8–12.5 × 10−6/◦C. CTE is just one of a number of sens-
itivity coefficients to consider for metrology applications.
Using DOE methodologies in these studies, it was possible to
develop the relationship between point density (pd) and scan
speed (ss) on the measurement variation in gear geometry
via traceability to the NGML UKAS registered laboratory.
It may be desirable to develop the significant terms for other
parameters generated from the regression equation individu-
ally as sensitivity coefficients. While different measurement
systems will have potentially differing sources of variation
and differing parameters which could affect the input to out-
put relationship, the methodologies demonstrated here could
assist in determining such relationships. Future studies to
investigate such relationships in this and other optical systems
are ongoing.

4. Conclusions and future work

4.1. Exploring the uncertainty of a sensor within the
measurement system

Having determined the optimal conditions for point dens-
ity and scan speed (and assuming we do not identify any
other significant variables within the system), it would be
desirable to consider how an uncertainty budget could be
developed. This would need sensor specific results to be added
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in quadrature with the other established uncertainty sources
from the measurement system. In one sense this may be easier
for the HP-O system than other optical systems for two reas-
ons. Firstly, methods to determine the sources of volumetric
error and uncertainty within the X, Y and Z axes and rotary
axis of (CMM’s have already been established [13, 27–31],
and secondly, as this sensor does not create a point cloud,
any such uncertainty considerations would not be applicable.
It would still be necessary to explore the variation in meas-
urement by measuring the same output characteristic multiple
times (perhaps thirty times), to establish the repeatability of
results in time series. Plotting these results onto a standard
SPC chart [25] would establish if random or special cause
variation was present, and this would determine the scale of
variation as well as which type of uncertainty to assign. The
methods already developed for calculating maximum permiss-
ible errors in CMM probing systems [32] could be helpful for
this purpose.

4.2. Advantages of using DOE, ANOM, ANOR and ANOVA

The results discussed in section 3 report optical measurements
with the HP-0 (HPAOL) sensor. Regardless of the measure-
ment system, the statistical methodology presented demon-
strates how the results from any measurements could be com-
pared. To see if the results of the optical and tactile sensors dif-
fer significantly, the graphical and numerical techniques out-
lined here can be utilised to make this decision. To see which
methodology gave results closer to the true value, assistance
from the NGMLwas required. The proposed methodology for
comparisons between point density and scan speed within one
sensor shows the potential to be applied in any tactile/optical
measurement comparisons, as well as a method to determine
and compensate for any errors by verification back to mas-
ter gear artefacts. In addition, those sources (or independent
instrument input variables) which have a statistically signific-
ant effect on the displacement response(s) can be observed,
and thus allow determination of which inputs need to be con-
trolled to ensure the results which would most closely align
with the results from the primary source. Finally, when the
mathematical relationship between scan speed and point dens-
ity with the measurements taken with the optical probe are
understood, it should be possible to develop sensitivity coeffi-
cients for the dimensional displacement observed on the meas-
ured gear (or any other) artefact.

4.3. Probing limitations for the study

Due to physical constraints of the setup, it was not initially pos-
sible to scan the full length of each gear tooth as required by the
standard [24], hence these results are a comparison between
tactile NGML measurement and optical (HP-O) measurement
over the same tooth area (as much as was achievable within the
instrument constraints). For this trial, the HPOAL sensor was
used, and some results were inconsistent for some output para-
meters. It was felt that the HPOAM sensor would give more
consistent results, and this will be the focus of future trials.

It should be noted that to keep the paper within constraints,
limited data was included to demonstrate how DOE/DOX
investigate the effects of how changing the instrument para-
meters can be utilised to correlate results with those obtained
from the NGML. When using DOE and ANOVA to explore
sensitivity coefficients, there are advantages, but the assump-
tions of ANOVA should always be tested using the various post
hoc analysis. These conditions were tested for and met during
early trials and demonstrated graphically in figure 6.

4.4. Larger module gear trials

At the time of writing, further trials are ongoing with a 9-tooth
spur gear with a module of 5.744 mm. These trials are utilising
the HP-OS-9010T optical sensor mounted on a Leitz PMM-
C (HP-S-X1H) CMM as shown in figure 8. Like the tactile
sensor, the optical sensor chosen will be utilised in a single
orientation (A axis = 0◦, B axis = 0◦) and as with the MTC
machine, this CMM has an integrated rotary axis. As per the
previous trials, the gear is first aligned and measured twice
with a conventional tactile ruby sphere (5 mm diameter), and
again best practice followed. In addition to the X1H sensor, the
larger module of this gear will allow greater access for light
and thus can be better utilised for tactile/optical comparisons.
And, as with the previous gear, the NGML will provide the
measurement traceability. Initially studies will explore radial
characteristics at various speeds and point densities. Following
this, future work is planned around lead/helix.

4.5. Data filtering

Measurement data resides in the spatial domain, but meas-
urement consists of instrument signals of various frequencies.
The exclusion of certain portions of the measurement data
frequency spectrum is called filtering. Gear profile and helix
measurement data are usually conditioned by low pass (high
frequency) filtering prior to analysis procedures. Filtering is
normally instrument dependent and can be either mechanical,
electrical or mathematical. Most modern filtering is applied
via the software. The filtering applied to gear profile (involute)
and lead (helix) requires a high 50% gauss filter [14]. This can
be applied through the Quindos® CMM software. Since only
pitch was considered in this paper, filtering was not relevant.

4.6. Observations

As the measurement results recorded in this work represent
variable data on a continuous scale, analytical and enumerat-
ive statistical techniques were applied. The results shown in
this paper (and in other experiments) proved that the measure-
ment process was statistically stable.When looking at utilising
ANOM and ANOR charts, it was possible to observe if the
scanning speed and point density of the CMM probing had an
influence on the measurement results. It was clear graphically
that both variables had an influence, and that interaction was
present. This means that both factors need to be considered
as significant sources when developing sensitivity coefficients

11



Meas. Sci. Technol. 36 (2025) 065014 D Sexton et al

Figure 8. (a) The 9-tooth module 5.744 mm spur gear and (b), mounted in chuck of the rotary table of a Leitz, PMM-C (HP-S-X1H) CMM
with HP-OS-9010T optical sensor.

(ci) for any uncertainty budget. Again, this can be determined
in conjunction with known size artefacts. When looking at
the orthogonal matrix and with the use of modern statistical
software, various graphical and numerical outputs can be cre-
ated and studied. Multiple inputs and outputs can be evalu-
ated within one data set. The influence of multiple sources of
variation within the instrument could be tested to determine
if they were significant (or not) using p values in ANOVA.
The DOE/DOX process allows for process optimisation which
could be utilised to correlate the results obtained back to
any primary sources. Also, by removing non-significant error
sources (and interactions) from any experimental results, the
uncertainty budget can be simplified because if the effects of
any input source (or interactions) are not significant, then the
uncertainty of that source cannot be significant either.

4.7. Digitalisation of metrology

Digitisation is the process of converting information from
a physical format into a digital one, ultimately improving
business competitiveness. Like many other sectors in busi-
ness, industry and society, digitisation applies to metrology.
In this context, there are many advantages to the way that
measurement data is exploited and disseminated, extracted and
utilised in the same way as in any design and manufacturing

process. Traditional processes are still widely employed and
most have already been digitised, including SPC, quality plan-
ning, FMEA, DOE and many others. Thanks to the drive
of industry 4.0, measurement procedures and quality control
processes have been optimised by enabling real-time execu-
tion of metrological analyses focused on critical parameters
[33]. Digital manufacturing and smart measuring technolo-
gies support the zero-defect manufacturing concept, by mov-
ing from off-line metrology to in-line measurements and auto-
mated inspection systems [34, 35]. Compared to conventional
off-line approaches, in-line measurement provides significant
benefits, including decreased inspection durations through the
elimination of laborious steps, real-time process qualitymonit-
oring, improved production speed, and the integration of fully
automatedmanufacturing systems [36]. The use of robotic sys-
tems has added to the capabilities of measurement devices
which can address a range of tasks autonomously. Automated
inspection has also allowed for multiple features and charac-
teristics to be measured by a single instrument thus removing
the need for many different offline technologies. The shape
and surface texture information of a measured part are repres-
entative of the process characteristics and the actual perform-
ances of the machine tool employed. As such, as reported by
Gao et al [34], the integration of manufacturing andmeasuring
operations is beneficial to the production process.
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